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Abstract

Instrumental variable estimation requires untestable exclusion restrictions.
With policy effects on individual outcomes, there is typically a time inter-
val between the moment the agent realizes that he may be exposed to the
policy and the actual exposure. In such cases there is an incentive for the
agent to acquire information on the value of the IV. This leads to viola-
tion of the exclusion restriction. We analyze this in a dynamic economic
model framework. This provides a foundation of exclusion restrictions in
terms of economic behavior. The results are used to describe policy eval-
uation settings in which instrumental variables are likely or unlikely to
make sense. For the latter cases we analyze the asymptotic bias. The
exclusion restriction is more likely to be violated if the outcome of interest
strongly depends on interactions between the agent’s effort before the out-
come is realized and the actual treatment status. The bias has the same
sign as this interaction effect. Violation does not causally depend on the
weakness of the candidate instrument or the size of the average treatment
effect. With social experiments, violation is more likely if the treatment
and control groups are to be of similar size. We also address side-effects of
the treatment, and we provide a novel economic interpretation of so-called
placebo effects.
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1 Introduction

Instrumental variable estimation has since long been a standard econometric

technique for dealing with endogeneity and selection issues in general, and for

non-experimental policy evaluation in particular (see e.g. Angrist, Imbens and

Rubin, 1996, Heckman, LaLonde and Smith, 1999, and Blundell and MaCurdy,

1999, for surveys). Basically, if one is interested in the effect of a “treatment

variable” on an outcome variable, and the treatment is not exogenously assigned,

then one may perform causal inference by exploiting the presence of variables

that causally affect the treatment status but do not have a direct causal effect on

the outcome. The latter restriction is called an exclusion restriction. Exclusion

restrictions are identifying restrictions, so they can not be tested. This means

that empirical results critically depend on the validity of the exclusion restriction,

and that this restriction needs to be justified on a priori grounds.

With policy effects on individual outcomes, there is typically a time interval

between the moment the agent realizes that he may be exposed to the policy and

the actual exposure. For example, unemployed workers are aware of the existence

of policies leading to treatments at some point of time in the future. As long as

the instrumental variable affecting the treatment does not have a causal effect

on the individual’s behavior, the exclusion restriction is not violated. Often, a

sufficient condition for this is that the agent does not observe the value of the

instrumental variable. However, there is an incentive for the agent to acquire

information on this value. After all, the probability of exposure to treatment

is a determinant of the optimal strategy, and the more the agent knows about

it, the better he can fine-tune his behavior in response to this, and the higher

his expected present value will be. The agent’s strategy affects the outcome

of interest. Thus, the acquisition of the value of the variable that is used by

the econometrician as instrumental variable leads to violation of the exclusion

restriction and to incorrect empirical inference.1

As an example, consider participation in a job search assistance program for

unemployed individuals, where the policy intensity differs across two otherwise

identical geographical regions. For example, in one region, the budget for the

1Earlier studies mentioning similar arguments, tacitly assuming that acquisition is free, in-
clude Abbring and Van den Berg (2003). For a recent exposition, see Heckman and Navarro
(2005). Modelling that agents use available information on determinants of future (policy)
events that affect the outcome of interest goes back to at least the rational expectations liter-
ature; see e.g. Hansen and Sargent (1980). Note that we are not concerned with mechanical
program lock-in effects that may affect the outcomes of participants before the end of the actual
treatment participation.
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program per potential participant may be larger, so that the individual proba-

bility of being treated is larger, holding everything else constant. An individual

may be aware of the distribution of policy intensities but not know his personally

relevant intensity, in which cases a regional dummy indicator may be a valid in-

strumental variable. If the individual finds out his relevant intensity then he will

typically use this information before the treatment is realized. For example, it

may be optimal to reduce the job search effort more if the treatment probability

is large, because it is cheaper to provide effort after the treatment. This may

lead to an under-estimation of the program effect on the employment rate say

one year after inflow into unemployment.

In this paper we investigate, in the context of a dynamic economic framework,

under which conditions it is optimal for the agent to acquire the value of the in-

tended instrumental variable. This provides a foundation of exclusion restrictions

in terms of economic behavior that takes costs and benefits into account. The

results are used to describe the policy evaluation settings in which instrumental

variables are likely or unlikely to make sense. This is especially useful since by

definition no empirical evidence is available on the validity of exclusion restric-

tions. We also analyze the asymptotic bias of the instrumental variable estimator

in case of violation of the exclusion restriction.

At first sight one may think that information acquisition does not take place

if and only if the acquisition costs are high, and that therefore the conclusion is

simply going to be that instrumental variables estimation is particularly useful

to study policy effects for agents with scarce resources. For active labor market

policy analysis this would mean that it is particularly useful for agents at the

bottom of the labor market, which coincides with the target group of most of

these policy measures. However, this line of reasoning ignores the role of the

value of the information that is acquired. We show that this leads to a different

set of conclusions. The results point at the importance of the extent to which

the treatment status and the agent’s effort interact in the outcome.

The literature on instrumental variable estimation has recently been con-

cerned with the use of so-called weak instruments, i.e. instrumental variables

that are only weakly related to the treatment status (see e.g. Stock, Wright and

Yogo, 2002, for a survey). Is is sometimes argued that weak instruments have the

advantage that they are less likely to be used by agents as direct causal inputs

into the outcome of interest. We argue that in certain cases this line of reasoning

is incorrect, and therefore this advantage of weak instruments may have been

over-estimated.

Our results can be straightforwardly applied to situations in which the treat-
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ment variable is not a policy variable. Also, the costs of information may cover

not only monetary costs but also other types of effort.2

We extend the framework and the results in a number of directions. First,

notice that the outcome is a function of the agent’s efforts and the treatment

status. In the baseline analyses, we assume that the expected utility that an agent

ultimately derives from a certain combination of effort and treatment is the same

as the expected value of the corresponding outcome. For example, an unemployed

individual may only be concerned about the probability of finding work, which is

also the outcome in which the researcher is interested. This assumption is in line

with dynamic economic theories such as job search theory. However, an agent

may also be concerned about side-effects of the treatment that are not reflected

in the measured outcome. We therefore extend the model to allow the agent’s

ultimate utility to be systematically different from the corresponding outcome.

This extension also covers cases in which the agent does not know the treatment

effect and can only guess it, as is the case in medical trials and pilot experimental

evaluations of novel labor market programs. In all of these cases, the decision

whether to acquire the value of the candidate instrument is driven by the agent’s

utility function, whereas the magnitude of the asymptotic bias also depends on

the actual effects of effort and treatment on the outcome.

Throughout the paper we use the above example about participation in a

job search assistance program as the leading example. Essentially equivalent

examples concern the evaluation of training programs for unemployed workers

and punitive sanctions and monitoring programs for unemployment insurance

recipients (where the treatment is a punitive sanction and the policy intensity

of interest is the intensity with which agents’ search effort is monitored). The

corresponding empirical literature contains many cases in which region is used as

an instrument. A similar example concerns the use of geographical distance to

college as an instrument to study the returns to education. In this case, parents of

children who live far from a college may provide substitute educational support.

Clearly, the analysis covers randomized experiments with delayed treatment

as well. There is also some relevance for the evaluation of double-blind experi-

2Of course, exclusion restrictions for instrumental variable estimation may be violated for
other reasons than those considered in this paper. Notably, the agent’s value of the candidate
instrument may be affected by unobserved characteristics of the agent that have a direct causal
effect on the outcome variable. (This is prevented if the candidate instrument is the result of a
deliberate randomization, like a deliberately randomized intention-to-treat variable in a social
experiment.) Rosenzweig and Wolpin (2000) consider violations in a dynamic setup that are
due to events occurring between the treatment and the outcome, whereas we are concerned
with behavior before realization of the treatment.
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ments of say a medication to treat a disease, where the randomized intention to

treat equals the treatment status, the treatment is immediate, and the treatment

status is supposed to be unobserved until the outcome is observed. In the case of

life-threatening diseases, an individual has an incentive to find out whether he re-

ceives medication or a placebo, for example by sending one tablet to a laboratory.

If he discovers that he receives a placebo then he may choose a different lifestyle,

which in turn affects the outcome. Another option is to share the tablets among

participating individuals. See Epstein (1996) and Schuklenk (2003) for examples

concerning experiments of AIDS medication, and Schulz (1995) for a pervasive

account of the high occurrence of deciphering in general. This can be trans-

lated into our model framework. Our results concerning the determinants of the

asymptotic effect bias can be used to understand the (sign of the) observed asso-

ciation between the treatment effect estimate and the degree of methodological

quality of the study (see e.g. Schulz et al., 1995, and Schulz and Grimes, 2002).

The mechanisms described above should be distinguished from non-compliance

upon assignment of the treatment status, when the actual treatment status is ob-

served by the analyst. Under certain conditions, IV estimation can accommodate

selective non-compliance (Imbens and Angrist, 1994). Nevertheless, it is interest-

ing to study the determinants of non-compliance behavior, and we show that our

model framework is amenable to this purpose. In particular, we briefly consider

when agents selectively choose to become non-compliers if they are able to use

information on determinants of the treatment assignment process. This estab-

lishes a relation to the literature on non-compliance behavior in experiments (see

in particular Philipson and DeSimone, 1997, and Chan and Hamilton, 2006, for

elaborate dynamic learning models).

We also relate to the literature on placebo effects. We provide an economic

explanation for so-called placebo effects in experiments. This does not assume

the availability of information on the treatment status, but instead rests on the

principle that agents rationally use information on the randomization probability

to adjust their behavior towards maximization of their expected present value.

The paper is organized as follows: Section 2 presents the model framework,

Section 3 derives the results concerning information acquisition, Section 4 dis-

cusses the implications for instrumental variable estimation, notably the asymp-

totic bias of the estimator in case of violation of the exclusion restriction. We also

discuss valid testing of the null hypothesis of no causal treatment effect. Section

5 concludes.
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2 The model framework

The main insights and results can be derived in a simple model framework with

three time periods.

Consider an assignment process leading to the actual treatment status of an

agent or decision maker.3 We assume that this process depends on a variable

Z. At the onset of the first period, Z is realized separately for each agent. We

take the distribution of Z as exogenously given and assume that Z is dispersed,

so var(Z) > 0. Z is the candidate instrumental variable. Each agent knows the

distribution of Z across all agents. However, an agent does not necessarily know

his own realization of Z. More precisely, in Period 1, each agent decides whether

to acquire information on Z at cost γ > 0 or not.

At the onset of Period 2, the agent determines his optimal strategy or effort s.

The agent may or may not know his private value of Z when determining s, but

we assume that in Period 2 the agent does not know yet his treatment status Y .

Without this assumption the analysis would be irrelevant, because there would

never be any incentive to acquire information on the policy intensity. As we shall

see, the analysis can allow for additional time periods and for agents to modify

their strategy upon learning their value of Y , as long as their behavior before

learning Y has an effect on the outcome. The effort s involves costs c(s) to be

paid in Period 2.

In Period 3, the agent’s actual treatment status Y is realized. Both s and Y

affect the outcome U , which is also realized in Period 3, simultaneously with or

after the realization of Y . We express the outcome U given Y = y and given s as

W ·f(y, s)+ ε, with 0 ≤ f(y, s) and 0 < W < ∞. Here W is just a multiplicative

constant in the outcomes, and we merely introduce it to facilitate the analysis of

effects of multiplicative changes in the outcomes. In the first leading example, f

may be the probability of making an income gain, and W may be the expected

income gain. The term ε is an idiosyncratic outcome component. We assume

that E(ε|Z) = 0, but all other determinants of Y may be correlated to ε. The

latter dependence captures the endogeneity of the actual treatment.

Summarizing, the sequence of events is as follows: the treatment assignment

intensity Z is realized, Z is acquired or not, the effort s is chosen, the treatment

Y is realized, and the outcome Wf(y, s) + ε is realized.

The above framework gives rise to a “reduced form” treatment evaluation

model. First, as will become clear below, we may assume without loss of gener-

3The model can be expressed in terms of counterfactual outcomes; see Angrist, Imbens and
Rubin (1996) for an exposition.
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ality that E(Y |Z = z) = z. This leads to a “treatment equation”,

Y = Z + ω (1)

where E(ω|Z) = 0. Secondly, we have an “outcome equation”,

U = Wf(Y, s) + ε (2)

with E(ε|Z) = 0. The analyst observes U, Y, and Z.

Suppose that, more general than equation (1), we would specify E(Y |Z =

z) = g(z) for some function g. Typically, it is not difficult to estimate g, and

this is why we simply redefine g(z) as our z. This presupposes that g varies with

z. In other words, Z as a candidate instrumental variable must be informative.

Also, note that the specification Y = Z + ω with E(ω|Z) = 0 can also capture

discrete Y . Notably, if Y is binary, one may define Y = 1 ⇐⇒ Y ∗ > 0 with

Y ∗ = Z + ω∗ and ω∗ being uniformly distributed on the interval [−1, 0]. To

facilitate the exposition we assume that Pr(Z ≥ 0, Y ≥ 0) = 1.

Suppose that in Period 1 the agent does not acquire his personal realization of

Z. Then Z only affects U by way of Y , so Z is a valid instrumental variable (IV)

because the corresponding exclusion restriction (ER) is satisfied. Now suppose

that in Period 1 the agent does acquire his personal realization of Z. Then Z

may affect his value of s. In that case, from equation (2), there is a causal effect

of Z on the outcome, resulting in a violation of the ER needed for instrumental

variable estimation (IVE). Before we analyze this, we first derive in the next

subsection the agent’s optimal behavior concerning s and concerning acquisition

of Z.

3 Economic behavior

3.1 Present values

An agent maximizes his expected present value. To focus on the main issue we

consider risk neutral agents. If the agent does not know his value of Z then the

expected present value R0 at the onset of Period 2 equals

R0 = max
s∈S

−c(s) +
1

1 + r
EZEY |Z (W · f(Y, s)) (3)

S denotes the choice set of s, with S ⊂ [0,∞). We denote the optimal s by s0.

Now suppose that the agent knows that his value of Z is z. The expected

present value R(z) at the onset of Period 2 is
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R(z) = max
s∈S

−c(s) +
1

1 + r
EY |Z=z (W · f(Y, s)) (i = 1, 2) (4)

where r is the discount factor. The optimal s can be expressed as s(z).

The value of information V in Period 1 equals

V =
1

1 + r
(EZR(Z)−R0) (5)

It is optimal to acquire Z in Period 1 if and only if V > γ. A central issue of

the paper is under which conditions this occurs. For the moment, we simplify

the above expressions by subsuming the parameter W/(1 + r) into the function

f , and 1 + r in (5) into V .

The first insight is that if f is additive in Y and s then the optimal s(z) in

(4) does not depend on z, and it is equal to s0. Consequently, V = 0, and the

agent does not acquire Z. In sum,

Proposition 1. If the outcome is additive in the treatment status and the effort

of the agent then the exclusion restriction is satisfied.

Throughout the paper we consider functions f that are positive and increas-

ing. As will become clear below, the main practical distinction in the derivations

will be whether S is discrete or not. In the continuous case we often assume that

c is quadratic, with c(s) = 1
2
c0s

2 and c0 > 0. Also, many results will be derived

for the following functional form for f ,

f(y, s) = ψ0 + ψ1s+ ψ2y + ρys (6)

with suitable restrictions on ψ1, ψ2, ψ3, ρ guaranteeing that f is positive and in-

creasing in the relevant intervals for y and s. We do however also provide results

for non-parametric specifications of f . The functional form in (6) is concise and

allows for explicit expressions and results for the quantities of interest. The

interaction parameter ρ captures the degree of complementarity (ρ > 0) or sub-

stitutability (ρ < 0) of treatment and effort, in the outcome. The functional

form is less restrictive as may seem. First of all, with binary s and y, (6) is

non-parametric because the four possible values of f (i.e., f(1, 1), f(1, 0), f(0, 1),

and f(0, 0)) are represented by ψ0, ψ1, ψ2, and ρ. Secondly, as will become clear

below, we may generalize the term ψ0 + ψ2y at no cost to a general function

k2(y) (provided that the resulting f is positive and increasing). So all results

based on (6) generalize in this respect. The same applies if we replace ψ1s by a

function k1(s), provided that k1(s)−c(s) is quadratic (and again f is positive and

increasing), where quadraticness is merely needed to ensure explicit expressions
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for the optimal s. More in general, the right-hand side of (6) can be interpreted

as the first part of an expansion of the underlying f . It is also useful to point

out that in the related literature on decision making with a noisy signal about

the unknown state of the world, the general effect of the shape of the outcome

function (f) on the value of information (V ) is typically too hard to analyze in

terms of the model primitives, if no parametric assumptions are made on f (see

Persico, 2000, and Athey and Levin, 2001). We return to this literature below.

3.2 Optimal behavior with continuous effort

Suppose that the choice set S of effort s is an interval. We do not restrict Z or

Y to be discrete or continuous, so the results below are valid in both cases.

We start with the model in which the functions f and c satisfy (6) and the

quadratic specification c(s) = 1
2
c0s

2, respectively. Within this framework we first

consider the case ρ > 0. This means that treatment and effort are complements

in the outcome. The requirements that f is positive and increasing are then

fulfilled by way of the restrictions that ψ0 > 0, ψ1 ≥ 0, ψ2 ≥ 0. Also, we assume

that c0 > 0. The optimal s is always positive, and we assume that the lower and

upper boundary of S are not binding for the optimal s.

Let z := E(Z) denote the population mean of Z. It is easy to derive that the

optimal effort equals

s(z) =
ψ1 + ρz

c0
(7)

s0 =
ψ1 + ρz

c0

Note that s(z) increases in z. This was to be expected. The complementarity of

f implies that the marginal return of effort is higher if the expected (beneficial)

treatment level is higher. Also, the optimal effort is higher if the cost of it is

lower, if the marginal return of it is higher, and if the degree of complementarity is

higher. The optimal s does not depend on the marginal effect ψ2 of the treatment

Y .

By substituting (7) into equations (4) and (3), we obtain that

V =
1

2c0
ρ2var(Z) (8)

Consequently, the ER is violated iff 1
2c0

ρ2var(Z) > γ.

Before we interpret this result we first analyze the case ρ < 0. This means that

treatment and effort are substitutes in the outcome. In the case of participation
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in active labor market programs, this case may be more realistic than the case

ρ > 0. For example, there may be an upper bound on the outcome, and the

effort has to compete with efforts for other activities outside of the model.4 We

also assume again that c0 > 0. The requirement that f is positive and increasing

now leads to more complex restrictions on the parameters of f . Notably, the

parameters need to ensure that Y and s are bounded from above. For a start,

we take ψ0 > 0, ψ1 > 0, ψ2 > 0. Next, we ensure that f increases in s for every

y in the support of Y . Sufficient for this is that Pr(Y < ψ1

−ρ |Z = z) = 1 for

every z in the support of Z, because this implies that Pr(Y < ψ1

−ρ) = 1, which

implies the desired property of f . Note that Pr(Y < ψ1

−ρ |Z = z) = 1 together with

E(Y |Z = z) = z also implies that Pr(Z < ψ1

−ρ) = 1, which in turn implies that the

optimal s is positive. Finally, we ensure that f increases in Y for every s. This

is satisfied if s < ψ2

−ρ . We want to have a sufficient condition for this in terms of

the model parameters. The optimal s decreases in z, so the largest possible value

of s as a function of z is achieved at z = 0. This value equals ψ1/c0. Thus, f

has the desired property if ψ1/c0 < ψ2/(−ρ) or, equivalently, ψ2c0 + ρψ1 > 0. In

sum, we require

ψ0 > 0, ψ1 > 0, ψ2 > 0, ψ2c0 + ρψ1 > 0, Pr(Y <
ψ1

−ρ
|Z = z) = 1, (9)

where the last requirement applies for all z in the support of Z. The requirements

also imply that the optimal s satisfies 0 < s ≤ ψ1/c0.

We again assume that the lower and upper boundary of S are not binding for

the optimal s. It is not difficult to see that the expressions for the latter are the

same as (7), with s(z) now decreasing in z. The resulting expression for V is also

the same as in (8). We thus obtain,

Proposition 2. Consider the model with continuous effort, quadratic costs of ef-

fort, and the outcome function (6) with the conditions that ensure that it increases

in effort and the treatment status. Then the exclusion restriction is violated iff

ρ2var(Z)/(2c0) > γ.

This means, first of all, that the ER is likely to be violated if the treatment

status and the effort before the treatment strongly interact in their effect on the

outcome. This is because in that case the optimal effort s(z) is very responsive to

4This does not rule out that the treatment and the efforts after the realization of the treat-
ment are complements in their effect on outcomes in subsequent time periods. These are not
in the present model but one can extend it to include them.
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the agent’s value z, and the loss of choosing the wrong amount of effort is larger.

For example, if ρ > 0 then knowing that z is large leads to an optimal effort s(z)

that is also very large, while knowing that z is small leads to a small s(z), and in

both of these cases the alternative choice of an intermediate effort level s0 entails

a substantial loss.

Violation is also more likely if Z has a large variance. In that case, the

candidate instrument generates a large range of mean policy intensities Y |Z, and
it is more likely that not acquiring Z leads to a large loss. If the effort cost

parameter c0 is large then violation is less likely, because then the optimal effort

is small whether one acquires z or not. Violation of the ER is more likely if γ is

small, which is trivial to understand.

It is also useful to discuss which model parameters do not affect the likelihood

that the ER is violated. First, consider the parameter ψ2. Until now we have not

defined summary treatment effects yet. However, it is clear that any such measure

depends on ψ2. But this parameter does not affect the value of information.

Therefore, the size of the (average) treatment effect does not affect the validity

of the ER.

Secondly, consider the strength of the candidate instrument. This is usually

defined as the strength of the association between Z and Y , for example as

measured by the correlation coefficient R2(Y, Z), which in our model reduces to

var(Z)/var(Y ). This quantity does not have a direct effect on the validity of the

ER. If the residual variance var(ω) in the “treatment equation” (1) is of a higher

order of magnitude than var(Z) then the candidate instrument is weak but it may

nevertheless have a large variance by itself, and the latter makes it likely that

the ER is violated. The underlying reason is that agents are only concerned with

the mean of the treatment status Y given z, when they decide on their optimal

effort s.5

Thirdly, the validity of the ER does not depend on ψ0 and ψ1. The fact that

5More general functional forms of f(y, s) may have somewhat different implications. If
f(y, s) = ρk(y)s for some increasing function k then it can be shown that

V =
1
2c0

ρ2varZ(E(k(Y )|Z))

If, for example, k(y) = y3 and ω ≡ Y − Z is symmetric, then varZ(E(k(Y )|Z)) can be shown
to equal var(Z3) + 9(var(ω))2var(Z), which in turn equals

var(Z3) + 9(var(Z))3
[

1
R2(Y,Z)

− 1
]2

Therefore, the value of information V increases in var(ω), and increases in the weakness of the
candidate IV as conventionally defined.
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it does not depend on any of the ψi parameters reflects the fact that additive

effects of treatment status and effort do not affect the ER (recall Proposition 1).

We now return to the related literature on decision making with a noisy

signal about the state of the world. In this literature, agents receive a signal

(say, Z) about the unknown state of the world (say, Y ) and they have to decide

on which action (say s) to take. The outcome (say, f) depends on Y and s (see

Gollier, 2001, for a recent overview of models with signals, effort, and outcomes).

The main difference with our setup is that in this literature the focus is on the

strength of the causal effect from the state of the world Y on the signal Z (or,

equivalently, on the quality of the signal), whereas in our setup Z causally affects

Y . Also, this literature restricts attention to outcome functions f that satisfy

generalized notions of complementarity in the state of the world and the action

of the individual (like supermodularity).

Nevertheless, some of the results from this literature are directly applicable

to our context. Athey and Levin (2001) present a generalized version of the

following. Consider our model with continuous effort, where the treatment status

Y increases in Z in the sense of first-order stochastic dominance. The outcome

function increases in effort and the treatment status, and the cross-derivative is

positive. Then there is a monotone positive relation between z and the optimal

effort s(z).

If no parametric assumptions are made on f then the general effect of the

shape of the outcome function (f) on the value of information (V ) is typically too

hard to analyze in terms of the model primitives (see Persico, 2000, and Athey

and Levin, 2001). Results for given (i.e., not optimally determined) functions

s(z) emphasize the importance of the degree of complementarity of the outcome

function on the value of information.

3.3 Optimal behavior with discrete effort

Now let S be discrete. For expositional reasons, we simplify the analysis by

assuming that s is binary, i.e. is taken from the set {0, 1}. We adopt specification

(6) for f . The cost of effort function c(s) is now represented by its two possible

values c(0) and c(1). By analogy to the previous subsection, we denote c(1)−c(0)

by c0, which may be called the cost of effort. The expressions for the present values

can now be simplified to

R(z) = ψ0 − c(0) + ψ2z +max{0, ψ1 + ρz − c0} (10)

R0 = R(z)
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and the agent chooses s = 1 iff the second term in the maximum exceeds 0, so

we replace equation (7) by

s(z) = I

(
ψ1 + ρz

c0
> 1

)
(11)

s0 = I

(
ψ1 + ρz

c0
> 1

)

where I(.) denotes the indicator function. The intuition behind these expressions

is exactly as for equation (7). The difference is that s(z) is now discrete instead

of continuous, and the optimal choice of s is now insensitive to small changes in

the parameter values.

To facilitate the exposition, we make the additional assumption that Z has two

possible values in the population of agents: Pr(Z = z1) = p = 1 − Pr(Z = z2),

with z1 �= z2 and 0 < p < 1 and normalization z1 > z2. It is again useful to

distinguish between the two cases in which treatment and effort are substitutes

(ρ < 0) or complements (ρ > 0) for the outcome. This time we start with the

former case, which requires again some restrictions on the range of values of the

model parameters. By analogy to the previous subsection, we impose

ψ0 > 0, ψ1 > 0, ψ2 > 0, ψ2 + ρ > 0, Pr(Y <
ψ1

−ρ
|Z = zi) = 1

where the last requirement applies for both zi. In fact, the results below also

apply if ψ2 + ρ = 0, meaning that with effort s = 1 it is irrelevant whether

the treatment is realized or not. This describes situations in which the outcome

of interest is the transition from unemployment to work if this is achieved with

certainty by the effort s = 1 but the treatment by itself cannot achieve this.

With ρ < 0, equation (11) implies that

0 ≤ s(z1) ≤ s0 ≤ s(z2) ≤ 1

and we can distinguish between the following four “regimes”,

• Regime 1. ψ1 + ρz1 > c0. Then s(z1) = s0 = s(z2) = 1.

• Regime 2. ψ1 + ρz1 ≤ c0 < ψ1 + ρz. Then 0 = s(z1) < s0 = s(z2) = 1.

• Regime 3. ψ1 + ρz ≤ c0 < ψ1 + ρz2. Then 0 = s(z1) = s0 < s(z2) = 1.

• Regime 4. ψ1 + ρz2 ≤ c0. Then 0 = s(z1) = s0 = s(z2).
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Next, we consider V . In Regime 1, V = 0, implying that the information is

not bought. This is because the agent knows that he will always provide effort,

under every policy, whether the policy is known or not, so the information is

irrelevant for the optimal behavior. The same line of reasoning applies to Regime

4. So, for certain extreme parameter values, the agent does not acquire his value

of Z. Now consider Regimes 2 and 3. We obtain that in Regime 2,

V = p (c0 − ψ1 − ρz1)

(recall that p := Pr(Z = z1)). This result is particularly easy to interpret. In

Regime 2, the information on Z is valuable if and only if in truth he has policy

intensity z1, because he does provide effort if he has no information. Therefore

the value V equals minus the expected loss of making such a wrong6 decision.

More precisely, V equals the product of [ the probability that, when Z is not

acquired, an effort s0 is chosen that is not optimal in the light of the actual Z ]

and [ minus the loss of choosing s0 given that the actual Z would lead to another

choice of s ]. In Regime 2, the statement in the first square brackets equals

Pr(Z = z1), which equals p. The statement in the second square brackets equals

[ the additional cost c0 of choosing s0 = 1 compared to the costs one would have

made if one would know that Z = z1 ] minus [ the additional expected return of

choosing s0 = 1 compared to the expected return if one would know that Z = z1

].

Similarly, in Regime 3,

V = (1− p) (ψ1 + ρz2 − c0)

Note that V > 0 if and only if the optimal effort when knowing that Z = z1

differs from the optimal effort when knowing that Z = z2. This is intuitively

clear: only in these cases does the knowledge of Z potentially have an effect on

the effort provided.

Consider Figure 1, plotting V against c0. The maximum of V as a function

of c0 is attained at the boundary between Regimes 2 and 3, which means c0 =

ψ1 + ρz. This value Vmax equals

Vmax = |ρ|p(1− p)(z1 − z2)

Vmax > γ iff there are values c(1), c(0) of the cost-of-effort function for which it

is optimal to buy the information.

6In this section, “wrong” is used in the sense of “wrong if the agent knows his actual value
of Z”.
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The expression for Vmax is similar to the expression (8) for V in the continuous

case. In particular, note that var(Z) = p(1−p)(z1−z2)
2. The comparative statics

results concerning the effects of ρ, γ and var(Z) for the continuous case therefore

carry over to the present discrete case. For example, concerning p we find that

acquisition is more likely if p is not too large and not too small. To understand

this, note that p = 1/2 maximizes the variance of Z in the population, for given

values of z1, z2. The a priori uncertainty concerning which value of Z applies is

largest for such intermediate values of p, and so is therefore the a priori probability

of providing the wrong amount of effort.

What is particular about the discrete case is that for certain parameter values

(namely in Regimes 1 and 4) the optimal s does not depend on Z. Due to the

continuity of the value functions, the ensuing low value of information also applies

for parameter values such that one is in one of the other regimes but close to

Regimes 1 and 4. In those cases the loss of making a wrong decision on s is too

small to justify the acquisition of one’s value of Z. To analyze the associated

comparative statics effects, one needs to examine for which parameter values one

is likely to end up in Regimes 1 or 4. For example, acquisition is more likely if c0
is not too large and not too small. To understand this, note that for high or low

values of c0 the information does not lead to behavioral changes and so is useless.
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We may re-interpret the effects of the costs parameters c0 and γ in terms

of marginal utility losses for a risk-averse agent who cannot transfer resources

between time periods and who has a per-period utility function that displays

decreasing absolute risk aversion. If the agent has a low per-period baseline

income then the marginal utility losses of costs c0 in Period 2 and γ in Period

1 are relatively high. The acquisition of information is unlikely for two reasons:

it is expensive and it is useless because it does not affect optimal effort. This

makes violation of the exclusion restriction unlikely. If the agent has a very high

per-period baseline income then the marginal utility loss of costs c0 in Period

2 is small, and acquisition is again unlikely, but now only for the second of the

above two reasons.7 Again, the exclusion restriction is then relatively easy to

justify. For agents with per-period baseline incomes in between these extremes it

is more likely that information on Z is acquired, so then the exclusion restriction

is more easily violated. From this point of view, instrumental variable analyses

that restrict attention to agents with low or high resources (e.g. income) are more

likely to be valid than analyses that include agents with intermediate resource

levels.

The results for the case ρ > 0 are a mirror image of those for ρ < 0. The op-

timal efforts satisfy 0 ≤ s(z2) ≤ s(z) ≤ s(z1) ≤ 1, and these can be characterized

in terms of the model parameters by applying equation (11). For sake of brevity

we do not present the other results for this case.

One may combine the discrete case of this subsection with the continuous

case of the previous subsection, e.g. by allowing the effort s to attain all values

in a fixed interval, e.g. [0, 1], with bounds that are binding for certain model

parameter values. Sufficiently large parameter value changes then typically lead

to results that correspond to those in this subsection.

3.4 Examples

Recall that in the first leading example, the treatment is participation in a job

search assistance program for unemployed individuals, and the policy intensity

differs across regions. An unemployed individual knows that there is a chance

that he may enroll in a job search assistance program, and this affects his job

search strategy before actual enrollment. If the program is attractive and if the

applicable regional probability of enrollment into the program is known, then this

7Unless of course the expected marginal return of providing effort is always very small as
well. The problem with characterizing comparative statics effects on optimal behavior if the
latter is a highly non-linear function of a large number of parameters is that there are often
joint limiting values of a subset of parameters that “push” the result in any desired direction.

16



probability affects the optimal private job search effort before enrollment into the

program. Typically, the effort is lower if the probability of enrollment is higher,

leading to a lower exit probability to work before enrollment. We now apply the

results in order to inquire the conditions under which Z is a valid instrumental

variable, that is, the conditions under which the agent does not acquire his value

of Z.

First, it is relatively easy for agents to learn the specific situation in their own

region and the effect of this on the rate at which they may expect to be treated.

This questions the relatively common approach to use regional variation in the

budget for (or, more generally, an indicator of the geographical availability of)

active labor market programs as an instrumental variable to study causal effects

of the program.

The agents’ incentive to acquire information is even larger if the policy inten-

sity varies strongly across the regions or if the agents take the a priori probability

of whether one lives in the high-budget region to be equal to around 1/2 which

means that about half of the agents are exposed to the high-budget situation. In

the limiting case where the policy intensity Z is binary, we have that Y ≡ Z,

so the candidate instrument has maximum strength. It follows that in this case,

strong instruments are more likely to be invalid instruments. In fact, the case

where Z is binary is equivalent to a deliberate randomization of the binary in-

tention to treat Z with full compliance. Typically, in experiments, the intention

to treat is randomized with probability equal to 1/2. Our results suggest that

(provided that the individual randomization outcome can only be acquired at

a positive cost when one has to decide the effort level s) it may be better to

use a smaller or larger probability, because this reduces the likelihood that the

agent has an incentive to acquire and use the value of the candidate instrumental

variable.

So far we have only examined a single candidate instrumental variable. Clearly,

if there are many such variables, each giving only limited information on the treat-

ment assignment process, and if the cost of information acquisition is linear in

the number of variables on which information is acquired, then this reduces the

likelihood that the exclusion restriction is violated. Other obvious results concern

the timing of events (i.e., the relative lengths of the time periods in the model).

For example, with a small amount of time between the moment at which the pol-

icy intensity is determined and the moment at which the treatment is realized,

the scope for information acquisition is reduced. If treatment and outcome are

realized close in time then acquisition is attractive from the point of view that

its expected future returns are discounted less heavily.
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3.5 An economic model for selective non-compliance

Suppose that agents can manipulate the probability distribution of their treat-

ment status Y , by way of choosing an action s before Y is realized. As an extreme

example, if the treatment status Y is binary, they may switch treatment status

by choosing an appropriate s. Agents’ optimal s may depend on Z, which may

be acquired at a cost.

This model framework can be reformulated in terms of our framework, by

allowing s to affect the distribution of Y |Z, which we denote by G(Y |Z; s). If the
agent does not acquire Z then he chooses action or effort s0 leading to G(Y |Z; s0)

which we denote by H(Y |Z). We start off by assuming that s does not affect

the expected outcome function f , so we write f := f(Y ) instead of f(Y, s). Note

that this implies that the exclusion restriction is satisfied.

To see the connection to our framework, note that determining the optimal s

involves calculation of EY |Z=z;sf(Y ). This equals
∫
f(y)dG(y|z; s), which can be

rewritten as8 ∫
f(y)dG(y|z; s) =

∫ [
f(y)dG(y|z; s)

dH(y|z)
]
dH(y|z)

The term in square brackets can now be interpreted as a new outcome function

f̃ and we can use the results derived earlier in the section to study the extent to

which agents acquire their value of z.

Under certain conditions, IV estimation accommodates selective non-compliance,

where it is (often tacitly) assumed that the compliance decision is made upon the

realization of the treatment status Y . In the setup of this subsection, the compli-

ance decision is made before the realization of Y , but in this setup the ER is not

violated either, because the actual outcome f only depends on Y . Obviously, the

setup of this subsection and the framework earlier in the paper can be combined

by allowing the original f to depend on s as well.

8If z is a location parameter of the distribution of [Y |Z = z; s], so that G(Y |z; s) can be
expressed as G0(Y − z|s) with G0 functionally independent of z, then this can be further
simplified to

∫
f(y + z)dG0(y|s).
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4 The magnitude of the bias of the instrumental

variable estimator if the exclusion restriction

is violated

4.1 The parameter of interest and the estimator

In this section we address the bias of the instrumental variable estimator due

to the exclusion restriction violations that we consider. It is useful to return

to the “reduced form” model representation from Section 2. IVE involves the

estimation of the effect of Y on U , holding all other determinants of U constant.

In the model, this is the partial derivative or first difference of f with respect to

its first argument. The classical IV regression estimator, if applied to data on

U, Y, and Z, estimates cov(U,Z)/cov(Y, Z). More precisely, estimation involves

that these two covariances are replaced by their sample equivalents, and then the

probability limit of the estimator, which we denote by β̂IV , satisfies

β̂IV → cov(U,Z)

cov(Y, Z)

In our model framework, if the ER is valid, this equals

cov(f(Y, s0), Z)

cov(Y, Z)
(12)

We simply define this to be the parameter of interest β. It captures the mean

slope of the outcome as a function of treatment status for a given fixed effort.9

Note that this definition of β is particularly sensible if f is linear in Y , as is the

case in specification (6), because then the slope of the outcome as a function of

treatment status for a given fixed effort is a constant equal to β. Moreover, as we

shall see, β is a local average treatment effect if Z is discrete with two points of

support. Note that we assume population homogeneity of all model parameters,

functions, and distributions.

Throughout the upcoming subsections we assume that the function f gov-

erning the observed outcomes is the same as the function f that agents use in

Periods 1 and 2 to assess their expected utility in Period 3. This entails that

agents know the average treatment effect that the researcher aims to estimate.

In Subsection 4.5 we relax this assumption and show how the results change.

9 This is even clearer for the approximation of β obtained by applying Stein’s Lemma.
For two random variables X1,X2 and a function g, this Lemma states that cov(g(X1),X2) ≈
E(g′(X1))cov(X1,X2). Application leads to β ≈ E(∂f

∂y (Y, s0)).
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Expression (12) can be simplified by noting that cov(Y, Z) equals var(Z).

Also, for any two random variables X1, X2, there holds that cov(X1, X2) =

cov(E(X1|X2), X2). This results in

β =
cov(E(f(Y, s0)|Z), Z)

var(Z)
(13)

If the ER does not apply, then

β̂IV → cov(f(Y, s(Z)), Z)

cov(Y, Z)
=

cov(E(f(Y, s(Z))|Z), Z)
var(Z)

(14)

Note that β̂IV captures the over-all effect of Z on the outcome. If the ER is

violated then the over-all effect does not equal the causal treatment effect but

also includes the causal chain that runs by way of the effort s. From equations

(13) and (14) it follows that

β̂IV − β → cov(E(f(Y, s(Z))− f(Y, s0)|Z), Z)
var(Z)

(15)

Somewhat loosely, this is an average of the effect on the outcome of the de-

pendence of s on Z.10 If treatment and effort are complements in the outcome

then one may expect that the optimal effort is an increasing function of z, and

consequently one may expect the asymptotic bias to be positive. In the next

subsections we examine this more formally.

If Z describes the assigned treatment (as opposed to the actual treatment Y )

then the over-all effect is usually called the intention-to-treat (ITT) effect on the

outcome. This can be decomposed into the actual treatment effect β and the

announcement or ex ante effect of the treatment (see e.g. Abbring and Van den

Berg, 2003, 2005, for this terminology). The latter thus equals β̂IV − β, which is

the asymptotic bias of the IV estimator β̂IV of β.

10 This is again more transparent for approximations of the asymptotic bias. Application of
Stein’s Lemma (see footnote 9) leads to β̂IV −β ≈ EZ( d

dz E(f(Y, s(Z))− f(Y, s0)|Z)). Applica-
tion of the Delta method approximation (which, for a random variableX and a function g, states
that cov(g(X),X) ≈ g′(E(X))var(X)) leads to β̂IV − β ≈ d

dz E(f(Y, s(z)) − f(Y, s0)|z)|z=z. It
can be shown that if z is a location parameter of the distribution of [Y |Z = z] and if s(z) = s0
and s(z) is differentiable then this simplifies further to

β̂IV − β ≈ s′(z)Eω

(
∂f

∂s
(ω + z, s0)

)
where ω = Y − Z (see equation (1)). Clearly, s′(z) captures the responsiveness of effort to
the value of Z, and the second term in the right hand side captures the effect of effort on the
outcome. We return in the next subsection to the quality of these approximations in special
cases.
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From an econometric regression point of view, one may state that the asymp-

totic bias of the IV estimator results from the fact that the size of the causal

effect of treatment on outcome depends on the candidate IV. An alternative

way to look at the asymptotic bias is to write the outcome equation as U =

f(Y, s0) + (f(Y, s(Z)) − f(Y, s0)) + ε. By ignoring the dependence of s on Z,

an IV regression analysis takes the sum of the second and third terms in the

right-hand side as the residual term in the outcome equation. Consequently, the

candidate IV Z is correlated to the error term in the outcome equation.

Note that instrumental variable estimators are typically biased in case of ER

violations even if there is no selectivity in the treatment.

4.2 Continuous effort

Suppose that the ER is violated. We are first going to examine the asymptotic

bias in the model with continuous effort, quadratic costs of effort, and the outcome

function (6), with the conditions that ensure that it increases in effort and the

treatment status. Subsequently we generalize the cost-of-effort function and the

outcome function.

With the outcome function (6), β as defined above is the average treatment

effect in the population ∂f(y, s)/∂y which in this specific case does not depend on

y, and which is evaluated at s = s0. By substituting f into (13), and substituting

s0, we obtain,

β = ψ2 + ρs0 = ψ2 + ρ
ψ1 + ρz

c0
(16)

which is always positive, by virtue of the conditions ensuring that f is increasing.

Similarly, by substituting (6) and s(z) from (7) into (14), we obtain,

β̂IV → ψ2 +
2ρψ1

c0
+

ρ2

c0

cov(Z,Z2)

var(Z)
(17)

As a result,

β̂IV − β → ρ

c0

[
ψ1 − ρz + ρ

cov(Z,Z2)

var(Z)

]
(18)

In Appendix 1 we prove the following:

Proposition 3. Consider the model with continuous effort, quadratic costs of

effort, and the outcome function (6) with the conditions that ensure that it in-

creases in effort and the treatment status. If the exclusion restriction is violated

then the asymptotic bias of the IV estimator β̂IV has the same sign as ρ.
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This result reinforces earlier results on the importance of the interaction param-

eter. For ρ > 0 the result is very intuitive. In that case, if the agent acquires his

value z of Z, then effort is increasing in z; the estimated treatment effect is then

boosted, and the causal effect of the treatment is over-estimated, so asymptoti-

cally β̂IV > β. In Appendix 1 we demonstrate that if ρ > 0 then β̂IV and β̂IV −β

increase in ρ. If ρ increases then it is optimal to make the effort s(z) more re-

sponsive to z, so that the announcement effect and therefore the asymptotic bias

increase. For ρ < 0 the additive and the interaction effects of s(z) have opposite

signs, but the former dominates. Note also that the asymptotic bias decreases in

c0. If costs of effort are low then it is pays off to supply a large amount of effort

for certain z, thus making effort more responsive to z.

In Appendix 1 we also demonstrate that (18) can be rewritten as

β̂IV → 2β − ψ2 +
ρ2z

c0
ξσ (19)

where ξ and σ are the skewness and the coefficient of variation of Z, so ξ := κ3/κ
3
2
2

and σ := κ
1
2
2 /z, with κi := E(Z − z)i. From this equation some additional

comparative statics results follow. As β does not depend on moments of Z higher

than the first, it follows that β̂IV and β̂IV − β increase in the skewness ξ of Z.

This makes sense: e.g. if Z is highly skewed to the right then relatively many

agents have a very high treatment value and a very high effort level, leading to a

very high correlation between outcome and candidate instrument.

Notice that if Z is symmetric (i.e. ξ = 0) then the variance of Z does not affect

the asymptotic bias of β̂IV . In this case, increasing var(Z) leads to an increasing

value of information, and therefore an increasing likelihood of ER violation, but

not to an increasing asymptotic bias of the IV estimator.11 So in this sense the

asymptotic bias is even less sensitive to the strength of the candidate instrument

than the ER.

Equation (19) can also be used to bound β further. We consider using the

sign of the skewness of Z, which is always observable. In particular, in case of

a balanced experiment, ξ = 0. We also consider cases where one has a priori

knowledge on the sign of ρ and on whether the additive effect ψ2 of treatment on

outcome is zero or positive.

Corollary 1. Under the conditions of Proposition 3,

(i). If Z is symmetric or skewed to the left then, asymptotically, β ≥ 1
2
β̂IV .

11With our outcome and cost functions, the case ξ = 0 is also the case for which the asymp-
totic bias approximations by Stein’s Lemma and the Delta method, in footnote 10, are exact.
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(ii). If Z is symmetric and ψ2 = 0 then, asymptotically, β = 1
2
β̂IV .

(iii). If Z is skewed to the right and ψ2 = 0 then, asymptotically, β < 1
2
β̂IV .

(iv). If Z is symmetric or skewed to the left and ρ > 0 then, asymptotically,
1
2
β̂IV ≤ β < β̂IV .

Extension to other cases is straightforward. Notice that ψ2 = 0 implies that

ρ > 0.

We now consider more general models. First, if we replace the additive term

ψ0+ψ2y in the outcome function by a general function k2(y) then all asymptotic

bias results remain valid. Next, we relax the assumption that costs of effort are

quadratic.

Proposition 4. Consider the model with continuous effort and the outcome func-

tion (6) with ψ0 > 0, ψ1, ψ2 ≥ 0, and ρ > 0. Let the cost of effort be increasing,

convex, and differentiable and lead to an interior solution for the optimal effort.

If the exclusion restriction is violated then the asymptotic bias of the IV estimator

β̂IV is positive.

See Appendix 2 for the proof.

It is more difficult to extend the result to the case where treatment and effort

are substitutes in the outcome (i.e., ρ < 0). This is because with ρ < 0 the

additive treatment effect and the interaction effect of treatment and effort have

opposite signs.12

Next, we relax the assumption that f satisfies (6), so we do not make any

parametric assumptions on the cost function and the outcome function. We use

the monotonicity result of Athey and Levin (2001) (see Subsection 3.2) as an

input. As noted above, in the literature on decision making with signals on

the unknown state of the world, comparative statics are sometimes too hard

to analyze in terms of the model primitives, and one can only derive results

12See e.g. equation (33) in Appendix 2. Specifically, with less parametric assumptions, it
is cumbersome to formulate and exploit restrictions ensuring that the outcome increases in
treatment and effort everywhere if treatment and effort are substitutes. However, using the
Delta method approximation (see footnote 10) the desired result follows. We substitute the
result from Appendix 2 that s(z) = s0 into the approximation, to obtain:

β̂IV − β ≈ (ψ1 + ρz)s′(z)

With ρ < 0, the function s(z) is decreasing (see Appendix 2), and the requirement that f
is increasing implies that z < ψ1/(−ρ). The right-hand side of the above approximation is
therefore negative.
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for given (i.e., not optimally determined) effort functions. To a certain extent

our next result shares this feature, in that we assume that the optimal effort

function s(z) satisfies s(z) = s0 without translating this into model primitives.

The assumption means that the agent’s optimal effort if he knows that he has

the average treatment intensity is equal to the agent’s optimal effort if he does

not know his intensity. In the cases considered in the previous propositions, this

assumption actually follows from the assumptions on the model primitives.

Proposition 5. Let the outcome function f(y, s) be non-negative, increasing and

supermodular in y and s. Let the treatment status Y increase in Z in the sense

of first-order stochastic dominance. Let the optimal effort function s(z) satisfy

s(z) = s0. If the exclusion restriction is violated then the asymptotic bias of the

IV estimator β̂IV is non-negative.

See Appendix 3 for the proof. Supermodularity captures complementarity and is

satisfied if the cross-derivative of f(y, s) with respect to y and s is positive. The

assumption that Y increases in Z in the sense of first-order stochastic dominance

is not nested with the assumption that E(Y |Z = z) = z, although the former is

weaker as a condition for E(Y |Z = z) to increase in z.

Note that Proposition 5 does not require continuity of effort s. In the next

subsection we consider the discrete case in more detail.

4.3 Discrete effort

Let s be binary and let Z have a discrete distribution with points of support

z1 > z2, like in Subsection 3.3. It can be shown that β in (13) then simplifies to

β =
E(f(Y, s0)|z1)− E(f(Y, s0)|z2)

z1 − z2

which is a local average treatment effect (compare Imbens and Angrist, 1994;

note that the denominator equals E(Y |z1)−E(Y |z2)). If the ER is valid then the

IV estimator β̂IV converges to this number. Accordingly, a Wald estimator can

be used as IV estimator.

If the ER is violated then we can simplify (14) to

β̂IV → E(f(Y, s(z1))|z1)− E(f(Y, s(z2))|z2)

z1 − z2

(20)

so that again β̂IV captures the over-all effect of Z on the outcome.

We proceed by taking the outcome function f to satisfy (6). From the above

(as well as from the previous subsection) it immediately follows that β = ψ2+ρs0.
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If the ER is violated then necessarily s(z1) �= s(z2). With ρ < 0, violation implies

that 0 = s(z1) < s(z2) = 1, whereas with ρ > 0 this is reversed. By elaborating

on equation (14) or on equation (20), we obtain

β̂IV → ψ2 − ψ1 + ρz2

z1 − z2

if ρ < 0

β̂IV → ψ2 +
ψ1 + ρz1

z1 − z2

if ρ > 0

Depending on the sign of ρ and the value of s0, we have four different expressions

for the asymptotic bias,

β̂IV − β → −ψ1 + ρz2

z1 − z2

if ρ < 0 and s0 = 0

β̂IV − β → −ψ1 + ρz1

z1 − z2

if ρ < 0 and s0 = 1

β̂IV − β → ψ1 + ρz1

z1 − z2

if ρ > 0 and s0 = 0

β̂IV − β → ψ1 + ρz2

z1 − z2

if ρ > 0 and s0 = 1

Thus,

Proposition 6. Consider the model with binary effort, a candidate IV with a

discrete distribution with two points of support, and the outcome function (6) with

the conditions that ensure that it increases in effort and the treatment status. If

the exclusion restriction is violated then the asymptotic bias of the IV estimator

β̂IV has the same sign as ρ.

The bias terms are larger if z1 and z2 are close. However, recall that this

result is derived under the simplifying assumptions that all agents are in Regime

2 and acquire information on Z, so that z1 and z2 can not be too close.

From the interpretation of the bias as capturing the announcement effect or

ex ante effect of the treatment, it follows that a large bias term is equivalent to

a large ex ante effect. This means that a large bias is often associated to a high

value of information.

4.4 Testing for a causal treatment effect in absence of an

exclusion restriction

Despite the fact that the IV estimator is asymptotically biased if the ER is vi-

olated, we can still use standard tests to inquire whether the treatment has a
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causal effect on the outcome. To see this, notice that in absence of a treatment

effect the value of information is zero, so there is no acquisition of information,

implying that the ER is satisfied and the IV treatment effect estimator is asymp-

totically equal to zero. The standard asymptotic tests of the null hypothesis of

a zero treatment effect therefore have the correct size. This exploits the insight

that in our model any violation of the ER is behaviorally triggered by a non-zero

treatment effect.

One may wonder what the power is of such tests if the null hypothesis of

no treatment effect is incorrect in reality and, in addition, the ER is violated.

We shed some light on this by examining the (asymptotic) signs of β, β̂IV , and

β̂IV − β. According to expression (13), the treatment effect parameter β has the

same sign as cov(E(f(Y, s0)|Z), Z). If the treatment status Y increases in Z in

the sense of first-order stochastic dominance, and f(y, s) strictly increases in y,

then E(f(Y, s0)|Z) increases in Z, and consequently β > 0.

To proceed, it matters again whether treatment and effort are complements or

substitutes in the outcome. For the former case we saw earlier in this section that

asymptotically β̂IV ≥ β. Therefore one may expect a higher power of the standard

asymptotic tests of the null hypothesis of a zero treatment effect, compared to

when the ER is not violated. This makes sense: the true treatment effect is

magnified by the agents’ efforts.

For the substitution case with our parametric functional forms of f(y, s) and

c(s), we saw that asymptotically β̂IV < β. The next example shows that it is

even possible that asymptotically β̂IV = 0.

Example 1. Let ψ1 = ψ2 = c0 = 1 and ρ = −3/4. Note that these values

satisfy the parameter restriction ψ2c0 + ρψ1 > 0 (see (9)). In turn, they imply

that Pr(Z < 4/3) = 1. By substituting our f and s(z) into (14) we obtain that

asymptotically β̂IV ≥ 0 iff cov(Z,−1
2
Z + 9

16
Z2) ≥ 0. The function −1

2
Z + 9

16
Z2

strictly decreases in Z on the interval (0, 4
9
), so if this interval includes the sup-

port of Z then asymptotically β̂IV < 0. If Z has a discrete distribution with as

only two points of support 1/3 and 5/9 then β̂IV → 0.

In this pathological case the asymptotic power is zero. In general, in the substi-

tution case, one may expect the power to be lower if the ER is violated than if

the ER is satisfied.

One way to improve the power is to look for evidence of higher-order depen-

dencies between the candidate instrument Z and the outcome U . Under the null

hypothesis, these must be absent as well.

26



4.5 Systematic difference between the outcome and the

agent’s utility in the outcome period

We now allow the function f ∗ governing the observed outcomes to differ from the

function f that agents use in Periods 1 and 2 to evaluate their expected utility

in Period 3. This is relevant in a number of cases. The function f ∗ may not take

account of side-effects that make the treatment unattractive to the agent. Also,

agents may not know the value of the average treatment effect that the researcher

aims to estimate, and the assumptions they make about this in Periods 1 and 2

may be deviate systematically from the actual f ∗.
The analysis in Section 3 describes how the choice of the effort level s and

the validity of the ER depend on f . These decisions do not depend on f ∗, so all
results from that section also apply to the current framework.

To proceed, we start assuming that f satisfies (6), that effort is continuous,

and that the actual outcomes U are generated by U = f ∗(Y, s) + ε with

f ∗(y, s) = ψ∗
0 + ψ∗

1s+ ψ∗
2y + ρ∗ys (21)

The case ψ2 < ψ∗
2 is particularly interesting as it captures situations where the

agent perceives a disutility of the treatment that is not revealed in the outcome.

Also, with ρ < ρ∗ < 0, the agent dislikes the combination of high treatment and

high effort more than is warranted by the corresponding actual outcome.

Equations (16) and (17), expressing the parameter of interest β and the prob-

ability limit of its estimator β̂IV in terms of the model parameters, are now

replaced by

β = ψ∗
2 + ρ∗s0 = ψ∗

2 + ρ∗
ψ1 + ρz

c0
(22)

β̂IV → ψ∗
2 +

ρψ∗
1 + ρ∗ψ1

c0
+

ρρ∗

c0

cov(Z,Z2)

var(Z)
(23)

In Appendix 4 we prove the following extension of Proposition 3,

Proposition 7. Consider the model with continuous effort, quadratic costs of

effort, the agents’ outcome utility function (6) with the conditions that ensure

that it increases in effort and the treatment status, and the outcome function

(21) with the conditions that (i) if ρ∗ ≥ 0 then ψ∗
1 ≥ 0, and (ii) if ρ∗ < 0 then

ψ∗
1 > 0 and Pr(Z < −ψ∗

1/ρ
∗) = 1. If the exclusion restriction is violated then the

asymptotic bias of the IV estimator β̂IV has the same sign as ρ, with the single

exception that if ρ∗ = ψ∗
1 = 0 then this bias is zero.
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The conditions (i) and (ii) on the range of ψ∗
1 and the support of Z serve to

ensure that f ∗(y, s) is increasing in s. This implies that we assume that both

f and f ∗ are increasing in s. Note that to some extent any disutility of s can

be accommodated for by the cost function c(s) in Period 2. Note that we do

not assume that the actual average treatment effect has the same sign as the

perceived expected treatment effect, since we do not make assumptions on (the

sign of) ψ∗
2, ρ

∗, and ψ∗
0.

Proposition 7 implies that of the two interaction parameters, it is the inter-

action in the agent’s objective function that drives the asymptotic bias. The

underlying reason is that the sign of this interaction determines whether the

agent’s effort is increasing or decreasing in z. If it is increasing then this boosts

the estimated average treatment effect regardless of how the actual outcomes

generated. Notice also that the asymptotic bias is completely independent of the

actual and the perceived additive treatment effect parameters ψ∗
2 and ψ2 and of

the strength of the candidate instrument. The other propositions of Subsections

4.2 and 4.3 can be generalized accordingly.

It is sometimes plausible that the agent can have access to more information

on the determinants of the treatment assignment process than the analyst can

observe. As this is somewhat related to the topic of this subsection, we briefly

discuss its main implications for the asymptotic bias here, using a simple frame-

work where the assignment process can be captured by the following “treatment

equation”

Y = Z1 + Z2 + ω (24)

with E(ω|Z) = 0 and also E(ε|Z) = 0, where Z := (Z1, Z2). We define Z1 and

Z2 such that E(Z1) = 0, and, consequently, E(Y |Z1 = z1, Z2 = z2) = z2. The

analyst observes U, Y, and Z2 but not Z1. The agent is able to acquire his values

of Z1 and of Z2. We adopt the usual functional forms for f(y, s) and c(s) and we

start off with the assumption that Z1⊥⊥Z2. Notice that the parameter of interest

β is now defined using Z2, as follows: β := cov(f(Y, s0), Z2)/cov(Y, Z2).

We can distinguish between four cases, depending on which Zi are acquired

by the agent. Firstly, suppose the ER applies to both Z1 and Z2. Then either

(or both) can be used as instrumental variables. Secondly, suppose the ER only

applies to Z1. Then Z1 is a valid instrument but it is unobserved to the analyst,

so it cannot be used for inference. In this case, Z1 can be subsumed into ω, which

leads to the main model framework of this paper. Thirdly, suppose the ER only

applies to Z2. Then Z2 can be used for IV estimation.

Fourthly, and most interestingly, suppose the ER is violated for both Z1 and
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Z2. We redefine Z1 and Z2 such that E(Z1) = 0. By analogy to Subsection 4.1, β

can now be shown to equal ψ2+ρs0, where s0 = (ψ1+ρz2)/c0. The IV estimator

β̂IV converges to cov(f(Y, s(Z)), Z2)/cov(Y, Z2), where s(z) = (ψ1+ρ(z1+z2))/c0.

This can be shown to lead to exactly the same expression for β̂IV as (17) in

Subsection 4.2, with Z2 now replacing Z. Consequently, the results of the previous

subsections all apply here. In sum, the results of the paper are robust with respect

to whether the agent has more information on the treatment assignment process

than the analyst. Note though that the maintained assumption that the private

information is orthogonal to the shared information (i.e. Z1⊥⊥Z2) is crucial.

Without this assumption it is more difficult to assess the asymptotic bias.

4.6 Changing the variance of the candidate instrument or

the randomization probability

By definition, it is difficult to empirically test the predictions of the paper, because

exclusion restrictions are untestable. As an alternative approach, one may look for

exogenous variation in the model parameters that affect the value of information.

For a certain range of parameter values the ER is satisfied, whereas for another

range it is not. With sufficient variation of these parameters in the data, it can be

verified whether the estimated treatment effect behaves as predicted as a function

of the parameter. Note that this does not involve a comparison between different

values of a candidate IV. Rather, the comparison is at a deeper level, namely

between different evaluation settings.

In fact, of all the determinants of V in the continuous case of Subsection 3.2,

only the variance of Z is more or less directly observable. We therefore compare

settings with different distributions of the candidate IV, notably with different

variances. To proceed, let effort be continuous, and let Z have a distribution

with separate parameters capturing the mean z and the variance σ2
z . The data

should now include settings with different values of σ2
z .

From the results in the paper it follows that the ER is satisfied iff σ2
z <

2c0γ/ρ
2. For these (smaller) values of σ2

z , the IV estimator β̂IV estimates the

policy effect parameter β. This parameter depends on z but not on σ2
z or any

other feature of the distribution of Z. For the values of σ2
z larger than 2c0γ/ρ

2,

the ER is violated, and β̂IV estimates a number different from β, where the sign

of the difference is determined by ρ. In general, this number varies itself with σ2
z .

Moreover, β̂IV as a function of σ2
z is discontinuous at 2c0γ/ρ

2.

In sum, the model predicts that as σ2
z increases, there is a point at which

β̂IV makes a discontinuous jump. This can be verified empirically. To the left of
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the discontinuity point, β̂IV is constant, but this depends crucially on the usual

functional forms for f(y, s) and c(s). If one has a priori knowledge on the sign

of the interaction of y and s in f(y, s) then one can verify empirically that the

jump has the same sign.

Now suppose that Z ≡ Y is binary, with p := Pr(Z = 1). This captures

experiments in which participants can only observe their treatment status at

a cost. The parameter p is then the randomization probability or treatment

assignment probability. This is the only parameter of the distribution of Z, so

it is not possible to vary var(Z) while keeping z constant. Specifically, var(Z) =

p(1 − p) while E(Z) = p. We therefore aim to compare settings with different

values of p, which is directly observable.

From the results in the paper it follows that the ER is violated iff p(1− p) >

2c0γ/ρ
2. This translates into a symmetric non-empty interval around p = 1/2

provided that ρ2 > 8c0γ, which we assume here. The interval is strictly embedded

in (0, 1). For values of p close to 0 or 1, the IV estimator β̂IV estimates the policy

effect parameter β, which equals

β = ψ2 + ρ
ψ1 + ρp

c0

This parameter depends on p, meaning that the average treatment effect

differs across experiments with different randomization probabilities, even if the

ER is satisfied, like in a medical double-blind experiment. It is interesting to

examine this in some detail. If p is high then the agents know that it is likely

that they have been assigned to the treatment group. With ρ > 0 (ρ < 0), the

marginal expected return of effort is higher (lower) if the expected treatment is

higher, so agents then have an incentive to provide more (less) effort s0. This

boosts the treatment effect.

This provides an alternative explanation for the evidence gathered by Malani

(2006b) that the estimated treatment effect in double-blind medical trials in-

creases with the announced treatment probability. Malani (2006b) attributes

this fact to placebo effects. (Malani, 2006a, uses similar data to study how

enrollment among heterogeneous individuals in a medical trial depends on the

treatment probability.) In our framework, agents rationally adjust their efforts

in response to the probability of being assigned to the treatment group.

For the values of p close to 1/2, the ER is violated, and β̂IV estimates a

number different from β, where the sign of the difference is determined by ρ.

Specifically,

30



β̂IV → ψ2 +
2ρψ1

c0
+

ρ2

c0

This does not depend on p, but that result depends crucially on the func-

tional forms for f(y, s) and c(s). More importantly, β̂IV as a function of p is

discontinuous at 1/2± 1/2
√
1− 8c0γ/ρ2.

In sum, the model predicts that as p increases from 0 to 1, there are two

points at which β̂IV makes a discontinuous jump, and these jumps have opposite

signs. This can be verified empirically. If one has a priori knowledge on the sign

of the interaction of y and s in f(y, s) then one can verify empirically that the

sequence of the signs of the jumps is correct. For example, if the interaction sign

is negative, so treatment and effort are substitutes, then one would expect the

estimated treatment effect to be relatively small for treatment probabilities close

to 1/2.

5 Conclusions

Exclusion restrictions for instrumental variable estimation are untestable and

therefore need to be justified externally. We consider situations in which there is

a time interval between the moment the agent realizes that he may be exposed

to the policy and the actual exposure. We economically analyze the decision

whether to acquire information concerning the value of the candidate instrumen-

tal variable.

The results suggest, first, that the exclusion restriction is more likely to be

violated if the candidate instrument covers a large shift in policy intensity or if it

divides the population into groups of similar size. We also find that the exclusion

restriction is more likely to be violated if the outcome of interest strongly depends

on interactions between the agent’s effort before the outcome is realized on the

one hand, and the agent’s treatment status on the other.

Deliberate randomization of the intention to treat often does not help. In

social experiments, the randomization outcome is typically available to the agent

at low cost. Moreover, the typical randomization probability of 1/2 corresponds

to a high incentive to acquire one’s realization. In fact, it may be better to use

a smaller or larger probability, because this reduces the incentive to acquire and

use the value of the candidate instrumental variable.

Having a weak instrument does not help either. Weakness of the candidate

instrument, as defined or measured in ways proposed in the literature, is not

directly related to the likelihood that the exclusion restriction is violated.
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With discrete effort, instrumental variable analyses that restrict attention to

agents with low or high resources (e.g. income) are more likely to be valid than

analyses that include agents with intermediate resource levels. The reason is that

for the former groups, the information is useless because it does not affect optimal

effort. In addition, for the low resource agents, it may be too expensive.

Finally, concerning the bias in case of violation of the exclusion restriction,

we find that typically, it is large if the value of information is large.

Suppose the circumstances are such that it is plausible that the exclusion

restriction is violated, so IV cannot be applied. One way to proceed is to es-

timate a structural economic model. Alternatively, with sufficient variation in

the timing of treatment and the outcome of interest, then one may follow the

so-called “timing-of-events” approach (Abbring and Van den Berg, 2003), that

is, impose some semi-parametric structure and exploit the variation in the timing

of events for identification of a causal treatment effect. Note that the value of

Z, if observed, does not have any influence on optimal behavior after the actual

treatment. Abbring and Van den Berg (2005) exploit this so-called “ex post ex-

clusion restriction” for identification of selection effects. They also demonstrate

that, with sufficient semi-parametric structure, the information in the timing of

events enables identification of the ex ante effect and the treatment effect.
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Appendix

Appendix 1 Proof of Proposition 3 and some implications

First of all, recall that Pr(Z ≥ 0) = 1 and var(Z) > 0. From (18), if ρ = 0 then

the asymptotic bias is zero.

Now consider the case ρ > 0. From Subsection 3.2, the conditions on the

outcome function that are listed in the proposition amount to ψ0 > 0, ψ1 ≥
0, ψ2 ≥ 0. Also, c0 > 0. By substituting cov(Z,Z2) = E(Z3)− zE(Z2) into (18),

it follows that asymptotically β̂IV − β has the same sign as

ψ1 + ρz

[
µ̃3 − 2µ̃2 + 1

µ̃2 − 1

]
(25)

where µ̃i := EZi/zi for i = 2, 3. Note that the denominator of the above term

in square brackets is proportional to var(Z) which is positive. Consequently, the

term in square brackets is positive iff the numerator is positive. The latter is

equivalent to µ̃3 > µ̃2
2 − (µ̃2 − 1)2. From Shohat and Tamarkin (1943)’s results

for the so-called Stieltjes Moment Problem it follows that a random variable Z

with Pr(Z ≥ 0) = 1 and var(Z) > 0 necessarily satisfies E(Z)E(Z3) > (E(Z2))2,

with the exception of the special case in which the support of Z consists of two

mass points, one of which is zero. The inequality is equivalent to µ̃3 > µ̃2
2, which

in turn implies that µ̃3 > µ̃2
2−(µ̃2−1)2. For the special case in which the support

of Z consists of two mass points, one of which is zero, there holds that µ̃3 = µ̃2
2,

but also that µ̃2 − 1 > 0, so that again µ̃3 > µ̃2
2 − (µ̃2 − 1)2. Consequently, the

asymptotic bias is always positive.

Now consider the case ρ < 0. From Subsection 3.2, the conditions on the

outcome function that are listed in the proposition amount to ψ0 > 0, ψ1 >

0, ψ2 > 0,Pr(Y < ψ1

−ρ |Z = z) = 1 for all possible realizations z, and ψ2c0 + ρψ1 >

0, with c0 > 0. From equation (18), and by analogy to equation (25), we obtain

that asymptotically β̂IV − β has the same sign as

ψ1

ρ
+

µ3 − 2zµ2 + z3

µ2 − z2 (26)

where µi := E(Zi). In Subsection 3.2 we saw that the parameter inequalities for

this case imply that Pr(Z < ψ1

−ρ) = 1, so Z satisfies Pr(Z ∈ [0,−ψ1/ρ)) = 1. We

denote −ψ1/ρ by zu. The term (26) is negative iff

−zu(µ2 − z2) + µ3 − 2zµ2 + z3 (27)
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is negative. For convenience, we rewrite this in terms of central moments of Z.

Let κi := E(Z − z)i. Then (27) equals

κ3 − (zu − z)κ2 (28)

To sign this, we apply results for the so-called Hausdorff Moment Problem (see

Shohat and Tamarkin, 1943, and Frontini and Tagliani, 1995). In particular, a

random variable Z0 with Pr(Z0 ∈ [0, 1)) = 1 and var(Z0) > 0 necessarily satisfies

(1− E(Z0))(E(Z
2
0)− E(Z3

0)) > (E(Z0)− E(Z2
0))

We take Z = zu · Z0, so that Z satisfies Pr(Z ∈ [0, zu)) = 1 and var(Z) > 0,

as required, and we use the notation z and µi to denote its moments. Clearly,

z = zuE(Z0) and µi = ziuE(Z
i
0). The above moment inequality can now be written

as

z2
u(µ2 − z)− zu(µ3 − zµ2) + zµ3 − µ2

2 > 0

and in terms of central moments of Z this simplifies to

0 > κ2
2 + (zu − z) [κ3 − (zu − z)κ2]

Since zu > z, this implies that κ3− (zu− z)κ2 < 0. Consequently, the asymptotic

bias is always negative. This completes the proof of Proposition 3.�

Notice that the result for ρ < 0 also applies if we allow for Y and Z to be able to

attain the value zu. Also, notice that by substituting cov(Z,Z
2) = E(Z3)−zE(Z2)

into (18) and by rewriting this in terms of central moments κi of Z, we obtain

β̂IV − β → ρψ1

c0
+

ρ2z

c0

[
κ3

zκ2

+ 1

]
(29)

By substituting β into the right-hand side, and by noting that κ3/(zκ2) equals

the skewness of Z times the coefficient of variation of Z, we obtain equation (19)

in the main text. Also, by combining equation (29) with the proof for the case

ρ > 0, it becomes clear that in that case β̂IV and β̂IV −β asymptotically increase

in ρ.

Appendix 2 Proof of Proposition 4

Because c(s) is not parameterized, there are no parameterized expressions for

s(z) and s0 either. However, from equations (3) and (4) it follows that with
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the outcome function (6) and with the assumptions on f and on c(s) listed in

the proposition, the optimal effort level s(z) in absence of the ER increases in z

(whereas with ρ < 0 it decreases in z). Moreover,

c′(s0) = ψ1 + ρz = c′(s(z))

implying that s(z) = s0. The latter means that the agent’s optimal effort if he

knows that he has the average treatment intensity is equal to the agent’s optimal

effort if he does not know his intensity. We will use this below. Note that the

function s(z) cannot be constant over the support of Z.

If we substitute (6) into (13) then we obtain that

β = ψ2 + ρs0 (30)

Similarly, if we substitute (6) into (14) then we obtain that

β̂IV → ψ2 +
ψ1cov(Z, s(Z))

var(Z)
+

ρcov(Z,Zs(Z))

var(Z)
(31)

Since s(z) is increasing, the second term on the right-hand side is positive. By

comparing (31) to (30), it then follows that if the third term on the right-hand

side of (31) is larger than or equal to ρs0 then asymptotically β̂IV > β. Since

ρ > 0, this requires that

cov(Z,Zs(Z))

var(Z)
≥ s0

which is equivalent to cov(Z,Z[s(Z)− s0]) ≥ 0. The latter can be written as

E(Z2s(Z))− zE(Zs(Z))− s0E(Z
2) + s0z

2 ≥ 0

which is equivalent to

E [Z(Z − z)(s(Z)− s0)] ≥ 0 (32)

Earlier in this proof we derived that s(z) is increasing and that s(z) = s0. These

two facts imply that s(z) ≥ s0 ⇐⇒ z > z. Consequently, (32) is true, and this

completes the proof.�

Note that we can rewrite equation (31) as

β̂IV → β +
ψ1cov(Z, s(Z))

var(Z)
+

ρE [Z(Z − z)(s(Z)− s0)]

var(Z)
(33)
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Appendix 3 Proof of Proposition 5

In terms of our model and notation, Athey and Levin (2001) prove that the

assumptions on the function f imply that the optimal effort level s(z) in absence

of the ER increases in z.

The numerator on the right-hand side of (15), cov(E(f(Y, s(Z))−f(Y, s0)|Z), Z)
determines the sign of the asymptotic bias. Following the line of reasoning that

leads up to (32) in Appendix 2, it is easy to see that this numerator can be

written as

E [(Z − z) · E(f(Y, s(Z))− f(Y, s0)|Z)] (34)

Since s increases, s(z) ≥ s(z) ⇐⇒ z ≥ z. Now f is non-negative, increasing

and supermodular, so for any given y there holds that f(y, s(z)) ≥ f(y, s(z)) if

and only if z ≥ z. By assumption, s(z) = s0, so for any given y there holds

that f(y, s(z)) ≥ f(y, s0) if and only if z ≥ z. The expectation over Y |Z = z of

f(Y, s(z))−f(Y, s0) then also has the property that it is non-negative if and only

if z ≥ z. Consequently, (34) is non-negative, and this completes the proof.�

Appendix 4 Proof of Proposition 7

Equations (22) and (23) imply that

β̂IV − β → ρ

c0

[
ψ∗

1 − ρ∗z + ρ∗
cov(Z,Z2)

var(Z)

]
(35)

Clearly, if ρ = 0 or if ρ∗ = ψ∗
1 = 0 then the asymptotic bias is zero.

Now consider the other cases, so ρ �= 0, and, in addition, ρ∗ �= 0 and/or

ψ∗
1 > 0. The proof in Appendix 1 of Proposition 3 demonstrates that if ρ∗ > 0

then

ψ∗
1 − ρ∗z + ρ∗

cov(Z,Z2)

var(Z)
(36)

is positive. If ρ∗ = 0 then ψ∗
1 > 0 and again (36) is positive. Similarly, the proof

in Appendix 1 demonstrates that if ρ∗ < 0 then the expression in (36) divided

by ρ∗ is negative, taking into account the assumptions that then ψ∗
1 > 0 and

Pr(Z < −ψ∗
1/ρ

∗) = 1. So if ρ∗ < 0 then again (36) is positive. By comparing

(35) to (36) it follows that the asymptotic bias has the same sign as ρ. Note

that we do not require assumptions on the range of values of ψ∗
0 and ψ∗

2 and the

support of Y |Z in terms of −ψ∗
1/ρ

∗ that correspond to those made concerning

the parameters of f . �
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